Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 346: 140567, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303386

RESUMO

In the contemporary context, executing light-oxidant- and reductant-driven reactions in solution-phase processes remains challenging mainly due to the lack of general tools for understanding the reactive potential of nano-functional catalysts. In this study, dual-active nanometals (Au and Cu doped with Au) capped within soy lecithin (SL), were developed and characterized, combining flexibility with the catalytic advantages and stability of liquid-phase catalysts. The as-synthesized SL-Au (LG) and SL-Au-Cu (LGC) catalysts were efficiently degraded rhodamine B (RB, 100%) in the presence of H2O2 under light irradiation (350 W lamp) at wide pH range (3-7) within 4.5 h and p-nitrophenol (p-NP, >90% degradation at pH 7) in the presence of NaBH4 under normal stirring with slower kinetics (∼72 h). RB degradation followed a pseudo-second-order kinetic model with a higher r2, and p-NP degradation followed first-order kinetics. The active sites embedded within the structural order of SL arrangement displayed elevated catalytic activity, which was further enhanced by the movement of intermediate/excited states and charged elements within the metal suspended in the phospholipid (LG and LGC). The self-regulating tunability of the physicochemical characteristics of these catalysts provides a convenient and generalizable platform for the transformation of modern dual-active (redox) catalysts into dynamic homogeneous equivalents.


Assuntos
Peróxido de Hidrogênio , Peróxidos , Peróxido de Hidrogênio/química , Boroidretos , Fosfolipídeos , Oxirredução , Suspensões
2.
Chemosphere ; 290: 133300, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34914956

RESUMO

Herein, titanium (IV) oxide (TiO2) loaded into montmorillonite (MK10) and sand is presented as an efficient heterogeneous catalyst for the degradation of 1,4-dichlorobenzene (DCB) as a model organic pollutant in the aqueous phase. The catalyst was synthesized by incorporating titanium isopropoxide as a precursor into MK10 through a simple solvent impregnation method, followed by direct calcination. The same protocol was applied to a clean quartz matrix. The resulting catalysts were characterized in detail using a variety of techniques. The TiO2 deposited MK10 and sand exhibited photochemical removal of DCB (>99% of 100 mg L-1) from the aqueous phase; this process followed a pseudo second-order kinetic model values in the range of Qe:111-113 mg g-1 and K2: 4-5 × 10-4 g mg-1 min-1. The kinetic plots indicate that after 30 min, the intermediates start to decrease and complete degradation occurs in 180 min. The modified materials showed fast DCB degradation kinetics under photochemical reaction conditions and adsorption under dark reaction conditions. The unmodified matrix adsorbed 99.12-99.88% of the DCB under both dark and light reaction conditions. These photocatalysts are stable, reusable, and least amount of titanium leaching. The simple two step synthesis, and high photocatalytic performance (with 10 mg of the catalyst without any oxidants) of our catalysts can be promising in environmental applications to treat similar organic pollutants in wastewater. These catalysts have enhanced activity and durability for environmental catalytic pollutant degradation reactions and can provide insights beyond single metal oxide catalysts for heterogeneous catalysis at diverse operating conditions.


Assuntos
Praguicidas , Dióxido de Silício , Catálise , Titânio
3.
Sci Rep ; 7(1): 1415, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28469190

RESUMO

We present the synthesis of new composite materials based on copper nanoparticles (Cu NPs) deposited onto montmorillonite (MK10) and quartz sand, for degradation of atrazine, in the context of an advanced oxidation process (AOP). The synthesis involves a first step in which polyethylenimine (PEI) capped Cu NPs (PEI_Cu NPs) are prepared, and then deposited onto, separately, MK10 and sand, through a solvent impregnation method. The resulting products are characterized in detail; the copper is found to exist as a mixture of copper (I, II) oxide. The degradation of atrazine follows a second-order kinetic model with constant values of K2 = 1.7957 g mg-1 min-1 for MK10_PEI_Cu NPs and K2 = 0.8133 g mg-1 min-1 for sand_PEI_Cu NPs. The reaction rate is linked to Cu2O and CuO redox-active species within the layers, pores and surface of the host materials. A degradation mechanism is found with application of these composite materials in the presence of H2O2; adsorption occurs in the absence of H2O2. In contrast, the unmodified MK10 and sand exhibit adsorption in both of the above reaction conditions. Finally, the stability of the Cu NPs following degradation is evaluated, and no significant amount of copper leaching is found.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...